Home
Class 11
MATHS
If A1A2....An is a regular polygon. Then...

If `A_1A_2....A_n` is a regular polygon. Then the vector `vec(A_1A_2)+vec(A_2A_3)+.....vec(A_nA_1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A_1A_2..........A_n is a regular polygon. Then the vectors overline(A_1A_2) + overline(A_2A_3)+.......+overline(A_nA_1) is equal to (A) 0 (B) n(vec(A_1A_2)) (C) n(vec(OA_1))(O is centre) (D) (n-1)(vec(A_1A_2))

Let A_1,A_2,....A_n be the vertices of an n-sided regular polygon such that , 1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4) . Find the value of n.

Let A_1,A_2,....A_n be the vertices of an n-sided regular polygon such that , 1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4) . Find the value of n.

Let vec r_1, vec r_2, vec r_3, .....vec r_n be the position vectors of points P_1,P_2, P_3 ,......P_n relative to the origin O . If the vector equation a_1 vec r_1+a_2 vec r_2+.....a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a) a_1+a_2+......a_n=n b) a_1+a_2+....a_n=1 c) a_1+a_2+....a_n=0 d) a_1=a_2=a_3+a_n=0

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

The base vectors vec a_ (1), vec a_ (2), vec a_ (3) are given in terms vectors vec b_ (1), vec b_ (2), vec b_ (3) vec a_ (1) = 2vec b_ (1) + 3vec b_ (1) -vec b_ (1), vec a_ (2) = vec a_ (1) -2vec b_ (2) + 2vec b_ (3), vec a_ (3) = - 2vec b_ ( 1) + vec b_ (2) -2vec b_ (3) if vec F_ (1) = 3vec b_ (1) -vec b_ (2) + 2vec b_ (3), Express vec F in terms of vec a_ (1) , vec a_ (2), vec a_ (3)

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

Given |vec(A)_(1)|=2,|vec(A)_(2)|=3 and |vec(A)_(1)+vec(A)_(2)|=3 . Find the value of (vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2)) .

Given |vec(A)_(1)|=2,|vec(A)_(2)|=3 and |vec(A)_(1)+vec(A)_(2)|=3 . Find the value of (vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2)) .