Home
Class 11
MATHS
P is a point on the line through the po...

`P` is a point on the line through the point `A` whose position vector is ` vec a` and the line is parallel to the vector ` vec b` . If `P A=6,` the position vector of `P` is: (a)` vec a+6 vec b` (b) ` vec a+6/(| vec b|) vec b` (c)` vec a-6 vec b/(| vec b|)` (d) ` vec b+6/(| vec a|) vec a`

Promotional Banner

Similar Questions

Explore conceptually related problems

P is a point on the line through the point A whose position vector is vec a and the line is parallel to the vector vec b. If PA=6, the position vector of P is: (a) vec a+6vec b (b) vec a+(6)/(|vec b|)vec b(c)vec a-6(vec b)/(|vec b|) (d) vec b+(6)/(|vec a|)vec a

If the position vectors of the points A(3,4),B(5,-6) and (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If the position vectors of the points A(3,4),B(5,-6) and C (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

A line l is passing through the point vec b and is parallel to vector vec c Determine the distance of point A(vec a) from the line l in the form vec b-vec a+((vec a-vec b)vec c)/(|vec a|^(2))vec c or (|(vec b-vec a)xxvec c|)/(|vec c|)

A line l is passing through the point vec b and is parallel to vector vecc Determine the distance of point A( vec a) from the line l in the form vec b- vec a+(( vec a- vec b) vec c)/(| vec c|^2) vec c or (|( vec b- vec a)xx vec c|)/(|vecc|) .

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.