Home
Class 12
MATHS
If In e^(2cos^2x-1)=cosx, for 0< x<= pi,...

If `In e^(2cos^2x-1)=cosx,` for `0< x<= pi,` then the value of x, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 2cos^2x+5cosx+2 ge 0

|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0

If cos3x+cosx-cos2x=0, then

Differentiate cos^(-1)(cosx),\ \ x in [0,\ 2pi]

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If cos2x-3cosx+1=(cos e c\ x)/(cotx-cot2x),\ then which of the following is true ?

cosx + cos2x + cos3x=0