Home
Class 12
MATHS
Let f(x)=2cos e c2x+secx+cos e cxdot The...

Let `f(x)=2cos e c2x+secx+cos e cxdot` Then find the minimum value of `f(x)forx in (0,pi/2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2cos ec2x+sec x+cos ecx, then the minimum value of f(x) for x in(0,(pi)/(2)) is

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

If f(x)=cos^2x+s e c^2x ,then

If f(x)=3+cos^-1(cos(pi/2+x)cos(pi/2-x)+sin(pi/2+x)sin(pi/2-x)) , x in [0,pi] then find the minimum value of f(x) is

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .