Home
Class 11
MATHS
lim(x->pi/2)[xtanx-(pi/2)secx] is equal ...

`lim_(x->pi/2)[xtanx-(pi/2)secx]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr pi/2) (2x-pi)/cos x is equal to

lim_(x rarr(pi)/(2))[(x-(pi)/(2))/(cos x)] is equal to (where [*]

lim_(xrarrpi/2)((2x-pi)/(cosx)) is equal to

Evaluate the following limits : lim_(xrarrpi/2)(xtanx-pi/2secx)

Evaluate the following limits: lim_(xto(pi)/(2))(xtanx-(pi)/(2)secx)

lim_(xto pi/2)(pi-2x)^(cosx) is equal to

Find the following using L'Hospital's rule (i) lim_(xto0) ((16+5x)^(1//4)-2)/((32+3x)^(1//5)-2)" "(ii)lim_(xto pi//2) [xtanx-(pi//2)secx]

Find the following using L'Hospital's rule (i) lim_(xto0) ((16+5x)^(1//4)-2)/((32+3x)^(1//5)-2)" "(ii)lim_(xto pi//2) [xtanx-(pi//2)secx]

Find the following using L'Hospital's rule (i) lim_(xto0) ((16+5x)^(1//4)-2)/((32+3x)^(1//5)-2)" "(ii)lim_(xto pi//2) [xtanx-(pi//2)secx]

If [.] denotes the greatest integer function , then lim_(xrarr pi//2)[(x-(pi)/(2))/(cos x)] is equal to.