Home
Class 11
MATHS
Let f(x)=intx^(sinx)(1+xcosxdotlnx+sinx)...

Let `f(x)=intx^(sinx)(1+xcosxdotlnx+sinx)dxa n df(pi/2)=(pi^2)/4dot` Then the value of `|"cos"(f(pi))|` is____

Promotional Banner

Similar Questions

Explore conceptually related problems

"Let " f(x)=int x^(sinx)(1+xcosx*In x+sinx)dx " and " f((pi)/(2))=(pi^(2))/(4). " Then the value of " cos f(pi) " is"- .

"Let " f(x)=int x^(sinx)(1+xcosx*In x+sinx)dx " and " f((pi)/(2))=(pi^(2))/(4). " Then the value of " cos f(pi) " is"- .

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

Let f(x) =sinx + 2 cos^(2)x (pi)/(4)lt=x lt= (3pi)/(4) . Then f attains its

If f(x)=cos^-1(sinx(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

If f(x) = |sinx| + | cos x| , find f'((3pi)/(4))

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is