Home
Class 9
MATHS
" 1) "(a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)...

" 1) "(a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

( Prove that: )/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

If abc=1, then ((1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1)))=? a.0 b.ab c.1 d.(1)/(ab)

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

if abc =2 then the value of (1)/(1+a+2b^(-1))+(1)/(1+(b)/(2)+c^(-1))+(1)/(1+a^(-1)+c)=

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c)+(1)/(1+c+a^(-1))=1

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1))((b^(3))/(b-1),(b^(2)-3)/(b-1)),((c^(3))/(c-1),(c^(2)-3)/(c-1)) are a!=1,b!=1,c!=1, then find the value of abc-(ab+bc+ca)+3(a+b+c)

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]