Home
Class 12
MATHS
" If "x=a(cos t+log(tan t/2)),y=a sin t"...

" If "x=a(cos t+log(tan t/2)),y=a sin t" then "(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=a(cos t + log tan (t/2)),y=a sin t , then what is (d^2y)/(dx^2) at t=(pi)/3 .

If x = a[cos t + log tan (t/2)], y = a sin t then find (dy)/(dx) .

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

Find (dy)/(dx)," if "x=a(cos t+log tan""t/2), y=a sin t .

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

If x = a sin t and y = a (cos t + log tan (t/2)) , find (d^2y)/(dx^2)

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If x=a sin t,y=b cos t, then (dy)/(dx)=