Home
Class 11
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `ax^2 + bx+c=0`, then prove that `alpha/beta+beta/alpha=(b^2-2ac)/(ac)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

If alpha and beta are roots of ax^2+bx+c =0 then prove that (alpha/beta+beta/alpha) = ((b^2-2ac)/(ac))

If alpha& beta are the roots of the equation ax^(2)+bx+c=0, then (1+alpha+alpha^(2))(1+beta+beta^(2))=

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha,beta are roots of the equation ax^(2)-bx-c=0, then alpha^(2)-alpha beta+beta^(2) is equal to-

If alpha,beta are the roots of the equation ax^(2)-bx+b=0 , prove that sqrt((alpha)/(beta))+sqrt((beta)/(alpha))-sqrt((b)/(a))=0 .

IF alpha and beta be the roots of the equation ax^2+bx+c=0 , find the values of alpha^2+beta^2

If alpha. beta are roots of the equation ax^(2)+bx+c=0 and alpha-beta=alpha*beta then

If alpha,beta are the roots of the equation ax^(2)+bx+c=0, then (alpha)/(alpha beta+b)+(beta)/(a alpha+b) is equal to -