Home
Class 11
MATHS
If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx ...

If `f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n` `f(x)={x^2,0lt=xlt=1x^3,x >0` `f(x)={1/(64),0lt=xlt=1/4x^2,1/41` `f(x)={1/(64),0lt=xlt=1/8x^2,1/81` `f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x >0 f(x)={1/(64),0lt=xlt=1/4x^2,1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x >0 f(x)={1/(64),0lt=xlt=1/4x^2,1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

If f(x) = maximum {x^3,x^2,1/64} AAx in[0,oo) , then a) f(x) = {{:(x^2",",0lexle1),(x^3",",xgt1):} b) f(x) = {{:(1/64",",0lexle1/4),(x^2",",1/4ltxle1),(x^3",",xgt1):} c) f(x) = {{:(1/64",",0lexle1/8),(x^2",",1/8ltxle1),(x^3",",xgt1):} d) f(x) = {{:(1/64",",0lexle1/8),(x^3",",xgt1//8):}

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1