Home
Class 11
MATHS
The number of values of x satisfying ...

The number of values of x satisfying
` 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of real values of x satisfying the equation.log_(5)(5^(x)-1)*log_(25)(5^(x+1)-5)=1 is :

The number of value(s) of x satisfying 1-log_9(x+1)^2=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The number of values of x satisfying 2^(log_5 16. log_4 x + log_(root(x)(2))5) + 5^x + x^((log_5 4)+5) + x^5 = 0

Value of x satisfying the equation (log_(5)(x))^(2)+log_(5x)((5)/(x))=1 are