Home
Class 12
MATHS
The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)...

The value of `(x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4+y^4+x^2y^2)+`... is :

A

`e^(x)+e^(y)`

B

`e^(x-e^(y)`

C

`e^(x^(2))+e^(y^(2))`

D

` e^(x^(2))-e^(y^(2))`

Text Solution

Verified by Experts

`(x+y)(x-y)+1/(2!)(x+y)(x-y) (x^(2)+y^(2))`
` +1/(3!)(x+y) (x-y)(x^(4)+y^(4)+x^(2)y^(2))+...`
`= (x^(2)-y^(2)) +1/(2!)(x^(4)-y^(4))+1/(3!)(x^(6)-y^(6))+...`
` = (x^(2) -y^(2))+1/(2!)(x^(4)-y^(4))+1/(3!)(x^(6)-y^(6))+...`
` = ( x^(2) + 1/(2!) x^(4) +(x^(6))/(3!) +...)-(y^(2)+(y^(4))/(2!) +(y^(6))/(3!)+...)` ,
` = (1+(x^(2))/(1!)+(x^(2))^(2)/(2!)+(x^(2))^(3)/(3!)+...)`
` -(1+(y^(2))/(1!) +(y^(2))^(2)/(2!)+(y^(2))^(3)/(3!)+...)`
` = e^(x^(2)) -e^(y^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series (x+y)(x-y) +1/(2!)(x+y) (x-y) (x^(2)+y^(2)) 1/(3!)(x+y)(x-y)(x^(4)+y^(4)+x^(2)y^(2))+... is

If S=(x+y)(x-y)+(1)/(2!)(x+y)(x-y)(x^(2)+y^(2))+(1)/(3!)(x+y)(x-y)(x^(4)+y^(4)+x^(2)y^(2))+..., then S =

Find the value of (x+y) ,if (x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

The factors of x^3-x^2y-x y^2+y^3 are (a (x+y)(x^2-x y+y^2) (b) (x+y)(x^2+x y+y^2) (c) (x+y)^2(x-y) (d) (x-y)^2(x+y)

(x + 2) (x + 1) = (x -2) (x -3) (y+3)(y+2)=(y-1)(y-2)

Simplify : (x-2y)(x^2-2y)+(y+2x)(x^2+4y)-(3x-2y)(x^2-4y) .

If x and y are of same sign,then the value of (x^(3))/(2)cos ec^(2)((1)/(2)(tan^(-1)x)/(y))+(y^(3))/(2)sec^(2)((1)/(2)(tan^(-1)y)/(x)) is equal to (x-y)(x^(2)+y^(2)) (b) (x+y)(x^(2)-y^(2))(x+y)(x^(2)+y^(2))*(d)(x-y)(x^(2)-y^(2))

"Find the value of "(x+y)," if "(x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)