Home
Class 11
MATHS
Let f(x)=sin(2x+pi/4)is defined for f:xr...

Let `f(x)=sin(2x+pi/4)`is defined for `f:xrarry,` then for this function to be bijective (A) `x= [(3pi)/8, pi/8]` ,` y= [-1,1]` (B) `x = [(-pi/2),(pi/2)], y= [-1,1]` (C) `x= [0, pi/2] , y= [-1,1]` (D) none

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is a. [0,pi/2] " " b. [0,pi/3] c. (o,pi) " " d. (pi/2,pi)

The period of the function f(x) = tan (4x - 1) is a) pi b) (pi)/(2) c) 2pi d) (pi)/(4)

sin^(-1)x+cos^(-1)x,x in[-1,1] = (A) 0 (B) pi/2 (C) pi (D) 2pi

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

Show that the function f(x)=sin(2x+pi//4) is decreasing on (3pi//8,\ 5pi//8) .

sin^(-1)x+cos^(-1)x,x in[-1,1]= (A) 0 (B) (pi)/(2) (C) pi (D) 2 pi

If y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x , then y lies in the interval (a) [pi/2,pi)uu[pi,(3pi)/2) (b) [pi/2,(3pi)/2] (c)(0,pi) (d) [0,pi/2)uu[pi/2,pi)

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1