Home
Class 12
MATHS
Statement I: If |z1+z2|=|z1|+|z2|, then ...

Statement I: If `|z_1+z_2|=|z_1|+|z_2|`, then `Im(z_1/z_2)=0 (z_1,z_2 !=0)` Statement II: If `|z_1+z_2|=|z_1|+|z_2|` then origin, `z_1`, `z_2` are collinear with 'z_1' and `z_2` lies on the same side of the origin `(z_1,z_2 !=0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1 , then |z_1+z_2| =

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1| = |z_2| =1 and amp z_1 +amp z_2 =0 then

Statement I : If | z |

If z_1= 2 -i, z_2= 1+ i , find |(z_1+z_2+1)/(z_1-z_2+1)| .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|