Home
Class 8
MATHS
(m+n)^3 + (m-n)^3...

`(m+n)^3 + (m-n)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3alpha sin^3alpha = n then (m + n)^(2/3) + (m-n)^(2/3)

If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3alpha sin^3alpha = n then (m + n)^(2/3) + (m-n)^(2/3)

Prove the following where m,ngt0 m^3-n^3gt(m-n)^3, (mgtn) .

If m= a Cos^(3) theta + 3a Cos theta Sin^(2) theta and n=a Sin^(3) theta + 3 a Cos^(2) theta Sin theta then (m+n)^(2//3) + (m-n)^(2//3) =

If acos^3alpha+3acosalphasin^2alpha=m and asin^3alpha+3acos^2alphasinalpha=n then (m+n)^(2/3)+(m-n)^(2/3)=

((m-n)^(3)+(n-r)^(3)+(r-m)^(3))/(6(m-n)(n-r)(r-m))=?

If a cos^(2)theta+3a cos theta sin^(2)theta=m and a sin^(3)theta+3a cos^(2)theta sin theta=n ,then prove that: (m+n)^(2/3)+(m-n)^(2/3)=2a^(2/3)

For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) 2^(3) + 2^(3) + 2^(3) +2^(3) is equal to:

Let's resolve into factors the following agebraic expressions : - m^3 - n^3 -m(m^2-n^2) + n(m-n)^2

Simplify the following algebraic expressions : - m+n - [2m - { m - 3 (m+n) - (2m - n )}]