Home
Class 12
MATHS
Let L1, L2, L3 be three distinct lines i...

Let `L_1, L_2, L_3` be three distinct lines in a plane P and another line L, is equally inclined with these three lines. Statement-1: The line L is normal to the plane P. because Statement-2: if non zero vector `vec V` is equally inclined to three non zero coplanar vector `vec V_1, vec V_2, vec V_3` then the vector `vec V` is normal to the plane of `vec V_1, vec V_2` and `vec V_3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write a vector normal to the plane vec r=l vec b+m vec c

Write a vector normal to the plane vec r=l vec b+m vec c

Resultant of three non-coplanar non-zero vectors vec a , vec b and vec c

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.

If vec v_1= (2,-3) , vec v_2=(0,1) and vec v_3=(-1,6) , find a unit vector parallel to vec v_1+2 vec v_2-vec v_3 .

If vec a, vec b, vec c are non-coplanar vectors and vec v * vec a = vec v * vec b = vec v * vec c = 0, then vec v must be a

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec v and vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec va n d vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w

Expression of a non-zero vector vec r as a linear combination of a non-zero vector vec a which is non-collinear with vec r and another vector perpendicular to vec a and coplanar with vec r and vec a is given as