Home
Class 11
MATHS
Let vecV = 2hati +hatj - hatk and vecW= ...

Let `vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU` is a unit vector, then the maximum value of the scalar triple product `[ vecU vecV vecW]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecv = 2hati + 2hatj - hatk and vecw = hati + 3hatk. If vecu is a unit vector, then the maximum value of the scalar triple product [vecu vecv vecw] is :

Let vecV=2hati+hatj-hatk and vecW=hati+3hatk . It vecU is a unit vector, then the maximum value of the scalar triple product [(vecU, vecV, vecW)] is

Let vecu = 2hati - hatj + hatk, vecv = -3hatj + 2hatk be vectors in R^(3) and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv).vecw| is-

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

Let vecu = hati+ hatj, vecv = hati - hatj and vecw= hati + 2 hatj + 3 hatk. If hatn is a unit vector such that vecu.hatn=0 and vecc.hatn=0, then |vecw.hatn| is equal to :

If vecu= 2hati-hatj+hatk, vecv = hati + 2 hatj-3 hatk and vecw= 3hati + phatj+ 5 hatk are coplanar find the value of p.

Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn =0 and vecv.hatn=0 then find the value of |vecw.hatn|