Home
Class 11
MATHS
Prove that lim(x->0)tanx^@/x=pi/180...

Prove that `lim_(x->0)tanx^@/x=pi/180`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: lim_(xrarr0)tanx/x=1

Proved that lim_(xrarr0) (tanx)/x = 1

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(x to 0)(tanx)/x is :

lim_(x to 0)(tanx)/x is :

Prove that: lim_(xto0)(p^(x)-q^(x))/(tanx)=log"(p)/(q)

Find (a) lim_(xrarr0)tanx/|x|