Home
Class 11
MATHS
If f(x)=x^2/(1+x^2), prove that lim(x->o...

If `f(x)=x^2/(1+x^2)`, prove that `lim_(x->oo) f(x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(|x-1|)/(x-1) prove that lim_(x rarr1)f(x) does not exist.

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x

If f(x)=sin^(-1)x then prove that lim_(x rarr(1)/(2))f(3x-4x^(3))=pi-3lim_(x rarr(1)/(2))sin^(-1)x

A function f(x) is defined as follows: f(x)={x^(2), if x!=1 and 1, if x=1 Prove that lim_(x rarr1)f(x)=1

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).