Home
Class 11
MATHS
lim(x->0)[(1-cosmx)/(1-cosnx)]=m^2/n^2...

`lim_(x->0)[(1-cosmx)/(1-cosnx)]=m^2/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that Lt_(xto0)(1-cosmx)/(1-cosnx)=m^(2)/n^(2),n ne0

Solve the limit ; lim_(xto0)(1-cosmx)/(1-cosnx)

Evaluate the following limits : Lim_(x to 0 ) (1-cosmx)/(1- cos nx)

Evaluate lim_(xto0) (1-cosmx)/(1-cosnx).

Evaluate, lim_(xto0) (1-cosmx)/(1-cosnx)

Evaluate lim_(xto0) (1-cosmx)/(1-cosnx).

Evaluate lim_(xto0) (1-cosmx)/(1-cosnx).

Evaluate (i)lim_(xrarr0)((1-cos 4x)/(1-cos5x)) (ii) lim_(xrarr0)((1-cosmx)/(1-cosnx)).

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :