Home
Class 12
MATHS
If A=[[alpha,beta],[gamma,alpha]]is suc...

If `A=[[alpha,beta],[gamma,alpha]]`is such that `A^2=I`, then

A

`1+alpha^2+betagamma=0`

B

`1-alpha^2+betagamma=0`

C

`1-alpha^2-betagamma=0`

D

`1+alpha^2-betagamma=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions on the elements of the matrix \( A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \) given that \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \] Using matrix multiplication: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & \alpha \beta + \beta \alpha \\ \gamma \alpha + \alpha \gamma & \gamma \beta + \alpha^2 \end{pmatrix} \] Simplifying the terms: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & 2\alpha \beta \\ 2\gamma \alpha & \gamma \beta + \alpha^2 \end{pmatrix} \] 2. **Set \( A^2 \) equal to the identity matrix \( I \)**: The identity matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Therefore, we have: \[ \begin{pmatrix} \alpha^2 + \beta \gamma & 2\alpha \beta \\ 2\gamma \alpha & \gamma \beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 3. **Set up the equations**: From the equality of the matrices, we get the following equations: - \( \alpha^2 + \beta \gamma = 1 \) (1) - \( 2\alpha \beta = 0 \) (2) - \( 2\gamma \alpha = 0 \) (3) - \( \gamma \beta + \alpha^2 = 1 \) (4) 4. **Solve the equations**: From equation (2) \( 2\alpha \beta = 0 \): - This implies either \( \alpha = 0 \) or \( \beta = 0 \). From equation (3) \( 2\gamma \alpha = 0 \): - This implies either \( \gamma = 0 \) or \( \alpha = 0 \). Now we consider two cases: **Case 1**: If \( \alpha = 0 \): - From (1): \( 0 + \beta \gamma = 1 \) → \( \beta \gamma = 1 \) - From (4): \( \gamma \beta + 0 = 1 \) → \( \gamma \beta = 1 \) (consistent). **Case 2**: If \( \beta = 0 \): - From (1): \( \alpha^2 + 0 = 1 \) → \( \alpha^2 = 1 \) → \( \alpha = 1 \) or \( \alpha = -1 \). - From (4): \( 0 + \alpha^2 = 1 \) → \( \alpha^2 = 1 \) (consistent). 5. **Conclusion**: The conditions derived are: - If \( \alpha = 0 \), then \( \beta \gamma = 1 \). - If \( \beta = 0 \), then \( \alpha = 1 \) or \( \alpha = -1 \).

To solve the problem, we need to find the conditions on the elements of the matrix \( A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \) given that \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I , then :

Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

If direction angles of a line are alpha, beta, gamma such that alpha+beta=90^(@) , then (cos alpha+cos beta+cos gamma)^(2)=

If alpha,beta and gamma are angles such that tan alpha+tan beta+tan gamma=tan alpha tan beta tan gamma and x=cos alpha+i sin alpha,y=cos beta+i sin beta and z=cos gamma+i sin gamma then the value of xyz is

If alpha, beta, gamma are roots of the equation x^3+qx+r=0 then find the value of (i) (beta-gamma)^2+(gamma-alpha)^2+(alpha-beta)^2 (ii) (beta+gamma)^(-1) +(gamma+alpha)^(-1)+(alpha+beta)^(-1)

If alpha,beta,gamma are the roots of px^(2)+qx^(2)+r=0 then the value of the determinant det[[alpha beta,beta gamma,gamma alphabeta gamma,gamma alpha,alpha betagamma alpha,alpha beta,beta gamma]] is p b.q c.0 d.r

If alpha,beta,gamma are the roots of the equation x^(3)-x+2=0 then the equation whose roots are alpha beta+(1)/(gamma),beta gamma+(1)/(alpha),gamma alpha+(1)/(beta) is