Home
Class 9
MATHS
If b=0,c<0, is it true that the roots of...

If `b=0,c<0,` is it true that the roots of`x^2+bx+c=0` are numerically equal and opposite in sign? Justify your answer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Property 5 Let ab and c be whole numbers and b!=0c!=0. If a-:b=c then b xx c=a

Without expanding or evaluating show that |(0,b-a, c-a),( a-b,0,c-b),( a-c ,b-c,0)|=0 .

The roots of the equation ax^2+bx + c = 0 will be imaginary if, A) a gt 0 b=0 c lt 0 B) a gt 0 b =0 c gt 0 (C) a=0 b gt 0 c gt 0 (D) a gt 0, b gt 0 c =0

If b^2>4a c then roots of equation a x^4+b x^2+c=0 are all real and distinct if: (a) b 0 (b) b 0,c>0 (c) b>0,a>0,c>0 (d) b>0,a<0,c<0

If |(a,-b,a-b-c),(-a,b,-a+b-c),(-a,-b,-a-b+c)| - kabc = 0 (a != 0, b != 0, c != 0) then what is the value of k ?

If a>0,b>0,c>0 prove that a/(b+c)+b/(c+a)+c/(a+b)ge3/2 .

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1