Home
Class 10
MATHS
let a=log3 20 , b=log4 15 , c=log5 12the...

let `a=log_3 20 , b=log_4 15 , c=log_5 12`then `1/(a+1)+1/(b+1)+1/(c+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

If a,b,c are non-zero and different from 1, then the value of |{:( log _(a) 1 , log _(a) b , log _(a) c ), ( log _(a ) ((1)/(b)), log _(b) 1 ,log_(a) ((1)/(c))), ( log _(a) ((1)/(c)) ,log _(a)c, log _(c) 1):}| is

If log_(4)5=a and log_(5)6=b, then log_(3)2 is equal to (1)/(2a+1) (b) (1)/(2b+1)(c)2ab+1(d)(1)/(2ab-1)

1/(1 + log_(b) a + log_(b) c)+ 1/(1 + log_(c)a + log_(c)b) + 1/(1 + log_(a)b + log_(a) c) has the value equal to

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

Which of the following when simplified reduces to an integer? a. (2log6)/(log12+log3) b. (log32)/(log4) c. ((log)_5 15-(log)_5 4)/((log)_5 128) d. (log)_(1//4)(1/(16))^2

Which of the following when simplified reduces to an integer? a. (2log6)/(log12+log3) b. (log32)/(log4) c. ((log)_5 15-(log)_5 4)/((log)_5 128) d. (log)_(1//4)(1/(16))^2