Home
Class 10
MATHS
The largest real solution of the equatio...

The largest real solution of the equatio `sqrt(sqrt(sqrtx))=4sqrt(4sqrt(4sqrt(3x^4+4)))` lies in theinterval

Promotional Banner

Similar Questions

Explore conceptually related problems

3sqrt(4)+2sqrt(9)+5sqrt(4)-sqrt(1)-4sqrt(9)

(3sqrt(2)-sqrt(3))(4sqrt(3)-sqrt(2))

sqrt(x^(4){sqrt(x^(4)sqrt((x^(4))))}

(sqrt(x)+sqrt(3))^(4)+(sqrt(x)-sqrt(3))^(4)

sqrt(4+sqrt(4-sqrt(4+sqrt(4-......oo))))=?

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

The equation sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))= hs

If y^(4)=k+2 and sqrt(sqrt(sqrt(y)))=4sqrt(4sqrt(4sqrt(3y^(4)+4)));k in real then the value of |k-2| is