Home
Class 12
MATHS
The equation of the curve through the po...

The equation of the curve through the point (1,0) which satisfies the differential equatoin `(1+y^(2))dx-xydy=0`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Differential equation (dy)/(dx)=f(x)g(x) can be solved by separating variable (dy)/g(y)=f(x)dx. The equation of the curve to the point (1,0) which satsifies the differential equation (1+y^(2))dx-xydy=0 is

Differential equation (dy)/(dx)=f(x)g(y) can be solved by separating variable (dy)/g(y)=f(x)dx. The equation of the curve to the point (1,0) which satsifies the differential equation (1+y^(2))dx=xydy=0 is

Differential equation (dy)/(dx)=f(x)g(y) can be solved by separating variable (dy)/g(y)=f(x)dx. The equation of the curve to the point (1,0) which satsifies the differential equation (1+y^(2))dx=xydy=0 is

Differential equation (dy)/(dx)=f(x)g(x) can be solved by separating variable (dy)/g(y)=f(x)dx. The equation of the curve to the point (1,0) which satsifies the differential equation (1+y^(2))dx=xydy=0 is

The equation of curve through point (1,0) which satisfies the differential equation (1+y^(2))dx- xy dy = 0 , is

Show that the equation of the curve passing through the point (1,0) and satisfying the differential equation (1+y^2)dx-xydy=0 is x^2-y^2=1

Show that the equation of the curve passing through the point (1,0) and satisfying the differential equation (1+y^2)dx-xydy=0 is x^2-y^2=1

Show that the equation of the curve passing through the point (1,0) and satisfying the differential equation (1+y^2)dx-xydy=0 is x^2-y^2=1

The equation of the curve passing through the point (1,1) and satisfying the differential equation (dy)/(dx) = (x+2y-3)/(y-2x+1) is