Home
Class 11
MATHS
Let n=10^6. Evaluate sum(d|n) log10 d...

Let `n=10^6`. Evaluate `sum_(d|n) log_10 d`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let log_(20)8=0 If value of log_(10)16 in terms of ^ prime a' is (ma)/(n-a), where m,n in N, find m+n

If in an AP, t_1 = log_10 a, t_(n+1) = log_10 b and t_(2n+1) = log_10 c then a, b, c are in

Evaluate the following: sum_(n=2)^(10)4^n

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

Evaluate the following: sum_(n=2)^(10)4^(n)

if h(x)=log_(10)x, then the value of sum_(n=1)^(89)h(tan n^(@))

Let a_n , n ge 1 , be an arithmetic progression with first term 2 and common difference 4. Let M_n be the average of the first n terms. Then the sum_(n=1)^10 M_n is

Given system of simultaneous equations 2^x\ . 5^y=1\ a n d\ 5^(x+1). 2^y=2. Then - (a) . x=(log)_(10)5\ a n d\ y=(log)_(10)2 (b) . x=(log)_(10)2\ a n d\ y=(log)_(10)5 (c) . x=(log)_(10)(1/5)\ a n d\ y=(log)_(10)2 (d) . x=(log)_(10)5\ a n d\ y=(log)_(10)(1/2)

Given system of simultaneous equations 2^x . 5^y=1 a n d 5^(x+1). 2^y=2. Then - a.x=(log)_(10)5 a n d y=(log)_(10)2 b. x=(log)_(10)2 a n d y=(log)_(10)5 c. x=(log)_(10)(1/5) a n d y=(log)_(10)2 d. x=(log)_(10)5 a n d y=(log)_(10)(1/2)