Home
Class 12
MATHS
^47C(4)+sum(J=1)^(5)(52-J)(C(3))=...

^47C_(4)+sum_(J=1)^(5)(52-J)_(C_(3))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the expression: quad 47C_(4)+sum_(j=1)^(5)52-jC_(3)

If ""^(47)C_(4)+sum_(r=1)^(5) ""^(52-r)C_(3) is equal to

The value of the expression ""^(47)C_(4) + sum_(j =1)^(5)""^(52-j)C_(3) is equal to :

The value of the expression ""^(47)C_(4) + sum_(i=1)^(5) ""^(52-i)C_(3) is

The value of [""^(47)C_(4) +sum _(r=1)^(5) ""^(52-r)C_(3)] is equal to-

14C_(4)+sum_(j=1)^(4)(18-j)C_(3)

What is ""^(47)C_(4)+""^(51)C_(3)+ sum_(j=2)^(5) ""^(52-j)C_(3) equal to ?

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .