Home
Class 12
MATHS
Let alpha=pi/5 and A=[ [cosalpha, sinalp...

Let `alpha=pi/5` and `A=[ [cosalpha, sinalpha] , [-sinalpha, cosalpha]]` then `B=A^4-A^3+A^2-A` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

let alpha=pi/5 and A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]] and B=A+A^2+A^3+A^4 then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) 0 lt |B| lt 1

If A=[(cas alpha, sinalpha),(-sinalpha,cosalpha)], AA'=

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A = {:[(cosalpha, sinalpha),(-sinalpha, cosalpha)] , then find A^2

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T\ A=I_2 .

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|