Home
Class 11
MATHS
d/(dx)[tan^(-1)((4x-4x^3)/(1-6x^2+x^4))]...

`d/(dx)[tan^(-1)((4x-4x^3)/(1-6x^2+x^4))]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

d/dx(tan^(-1)x) is :

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=

If d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a^(x+1)/(1+b^(x))loga , find the value of a and b.

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=

d/dx tan^(-1) ((2+3 tan x)/(3-2 tan x)) =