Home
Class 12
MATHS
int(0)^( pi/2)log(cosec x)dx=...

int_(0)^( pi/2)log(cosec x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^(pi//2)log (sec x) dx=

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .