Home
Class 12
MATHS
Let f: R->R be a differentiable funct...

Let `f: R->R` be a differentiable function with `f(0)=1` and satisfying the equation `f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y)` for all `x ,\ y in R` . Then, the value of `(log)_e(f(4))` is _______

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let f(x) be a differentiable function satisfying the condition f((x)/(y)) = (f(x))/(f(y)) , where y != 0, f(y) != 0 for all x,y y in R and f'(1) = 2 The value of underset(-1)overset(1)(int) f(x) dx is

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

A function f:R rarr R satisfy the equation f(x)f(y)-f(xy)=x+y for all x,y in R and f(y)>0, then

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=

" A function "f:R rarr R" satisfies the equation "f(x)f(y)-f(xy)=x+y" and "f(y)>0" ,then "f(x)f^(-1)(x)=

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is