Home
Class 12
MATHS
Let E1={x in R : x!=1 and x/(x-1)gt0} ...

Let `E_1={x in R : x!=1` and `x/(x-1)gt0}` and `E_2={x in E_1:sin^(-1)((log)_e(x/(x-1)))` is a real number} . Here, the inverse trigonometric function `sin^(-1)x` assumes values in `[pi/2,pi/2]` Let `f: E_1->R` be the function defined by `f(x)=(log)_e(x/(x-1))` and `g: E_2->R` be the function defined by `g(x)=sin^(-1)((log)_e(x/(x-1)))` LIST-I LIST-II P. The range of `f` is 1. `(-oo,1/(1-e)]uu[e/(e-1),oo)` Q. The range of `g` contains 2. `(0, 1)` R. The domain of `f` contains 3. `[1/2,1/2]` S. The domain of `g` is 4. `(-oo,0)uu(0, oo)` 5. `(-oo, e/(e-1)]` 6. `(-oo,0)uu(1/2, e/(e-1)]` The correct option is: `Prarr4; rarr2; Rrarr1;Srarr1` (b) `Prarr3; Qrarr3; Rrarr6; Srarr5` (c) `Prarr4; Qrarr2; Rrarr1; Srarr6` (d) `Prarr4; Qrarr3; Rrarr6; Srarr5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of the function f(x)=sin^(-1)((1+e^(x))^(-1))

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is

The domain of f(x)=log|log x|is(0,oo)(b)(1,oo)(c)(0,1)uu(1,oo)(d)(-oo,1)

Let f be a real valued function defined by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)), then the range of f(x) is: (a)R(b)[0,1](c)[0,1)(d)[0,(1)/(2))

If f(x)=(log)_(e)((x^(2)+e)/(x^(2)+1)), then the range of f(x)