Home
Class 12
MATHS
Let f1: RrarrR ,\ \ f2:(-pi/2,pi/2)->R\ ...

Let `f_1: RrarrR ,\ \ f_2:(-pi/2,pi/2)->R\ \ f_3:(-1,\ e^(pi/2)-2)rarrR` and `f_4: RrarrR` be functions defined by
(i)`f_1(x)=sin(sqrt(1-e^(-x)^2))`,
(ii) `f_2(x)={(|sinx|)/(tan^(-1)x)\ \ \ \ \ if\ x!=0 1\ \ \ \ \ \ \ \ \ \ \ \ if\ x=0,\ ` where the inverse trigonometric function `tan^(-1)x` assumes values in `(pi/2,pi/2)`,
(iii) `f_3(x)=[sin((log)_e(x+2))]` , where, for `t in R` , `[t]` denotes the greatest integer less than or equal to `t`,
(iv) `f_4(x)={[x^2sin(1/x) , if x!=0],[ 0\ \ \ \ \ \ \ \ \ \ \ if\ x=0`. The correct option is `Prarr2;\ \ Qrarr3;\ \ Rrarr1;\ \ Srarr4` (b) `Prarr4;\ \ Qrarr1;\ \ Rrarr2;\ \ Srarr3` (c) `Prarr4;\ \ Qrarr2;\ \ Rrarr1;\ \ Srarr3` (d) `Prarr2;\ \ Qrarr1;\ \ Rrarr4;\ \ Srarr3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=sin[pi^(2)]x+sin[-pi^(2)]x,where[x] denotes the greatest integer less than or equal to f(pi/2)=1( b) f(pi)=2(c)f(pi/4)=-1(d) none of these

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

Let f(x)=[x+1]sin((pi)/([x+2])), where [.] denotes the greatest integer function.Points of discontinuity of f(x) in the domain are

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

" If "f(x)=(tax([x]pi))/([1+|ln(sin^(2)x+1)|])," where [.] denotes the greatest integer function,then "f(x)" is "

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)