Home
Class 13
MATHS
[" Let "F(x)=f(x)+f((1)/(x))," where "f(...

[" Let "F(x)=f(x)+f((1)/(x))," where "f(x)=int(x)/(1+t)dt" .Then "F(e)" equals "],[[" (1) "(1)/(2)," (2) "0],[" (3) "1," (4) "2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

Let F (x) = f(x) + f ((1)/(x)), where f (x) = int _(1) ^(x ) (log t)/(1+t) dt. Then F (e) equals

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)