Home
Class 12
MATHS
If A and C are two angles such that A+C=...

If `A` and `C` are two angles such that `A+C=(3pi)/4` then `(1+cotA)(1+cotC)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If, in triangleABC , angle C is 45^(@) then: (1+ cotA)(1+ cotB) =

If A,B,C are the angles of DeltaABC then cotA.cotB+cotB.cotC+cotC.cotA=

In a triangle ABC if 9(a^(2)+b^(2))=17c^(2) then (cotA+cotB)/(cotC)=

If A,B,C are the angles off DeltaABC , then cotA*cotB+cotB*cotC+cotC*cotA =

If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC = k, then

If A,B,C are the angles of a triangle and sin^3 theta= sin (A- theta)sin (B-theta)sin (C-theta) , prove that: cot theta= cotA+cotB +cotC .

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC

In a triangle ABC, a^(2)+c^(2)=2002b^(2) , then (cotA+cotC)/(cotB) is equal to

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot