Home
Class 12
MATHS
If a^2+b^2+c^2=1, then the range of ab+b...

If `a^2+b^2+c^2=1`, then the range of `ab+bc+ca` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=2 then the range of ab+bc+ca is

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If a,b,c are the sides of a triangle then the range of (ab+bc+ca)/(a^(2)+b^(2)+c^(2)) is

If a,b,c are the lengths of the sides of a triangle,then the range of (ab+bc+ca)/(a^(2)+b^(2)+c^(2))