Similar Questions
Explore conceptually related problems
Recommended Questions
- lim(x->0)(a^x-b^x)/x=loge(a/b)
Text Solution
|
- Prove that log(ab)(x)=((log(a)(x))(log(b)(x)))/(log(a)(x)+log(b)(x))
Text Solution
|
- lim(x=0)(log(sin x)cos x)/(log(sin((x)/(2)))cos((x)/(2)))
Text Solution
|
- lim(x rarr0)(a^(x)-b^(x))/(x)=log(e)((a)/(b))
Text Solution
|
- if lim(x rarr0)(ae^(x)-b)/(x)=2 then a&b
Text Solution
|
- Let a=lim(x rarr0)x cot x and b=lim(x rarr0)x log x then
Text Solution
|
- lim(x rarr0)((log(sec(x/2))cos x)/(log(sec x)cos((x)/(2))))=
Text Solution
|
- If log(a)x = m and log(b)x =n then log(a/b)x=
Text Solution
|
- Let lim(x to 0) ("sin" 2X)/(x) = a and lim(x to 0) (3x)/(tan x) = b, t...
Text Solution
|