Home
Class 11
MATHS
Prove that RHL and LHL of the function f...

Prove that RHL and LHL of the function `f(x) =(1+cos x)/tan^2x` at `x->pi` are equal. Also find the `lim_(x->pi) f(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If fthe function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^2 - 1) = pi , evaluate lim_(x rarr 1) f(x).

If the function f(x) satisfies lim_(x rarr 1)(f(x)-2)/(x^2-1)=pi , evaluate lim_(x rarr 1) f(x) .

If the function f(x) = (1-sinx)/(pi-2x)^2 , x!=pi/2 is continuous at x=pi/4 , then find f(pi/2) .

If the function f(x) satisfies lim_(x rarr 1) (f(x)-2)/(x^(2)-1) = pi , evaluate lim_(x rarr 1) f(x)

If the function f (x) satisfies lim_(x rarr 1)(f(x)-2)/(x^2-1)=pi , evaluate lim_(xrarr1)f(x) .

If the function f(x) satisfies lim_(x to 2) (f(x) + 3)/(8 - x^3 ) = 2pi , evaluate lim_(x to 2) f(x)

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .