Home
Class 10
MATHS
" (vi) "sec^(4)A=sec^(2)A=tan^(4)A+tan^(...

" (vi) "sec^(4)A=sec^(2)A=tan^(4)A+tan^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i) sec^(4)A-sec^(2)A="tan"^(4)A+"tan"^(2)A (ii) "sin"^(8)theta-cos^(8)theta=("sin"^(2)theta-cos^(2)theta)(1-2"sin"^(2)thetacos^(2)theta) .

Prove the following identities: sec^(4)A-sec^(2)A=tan^(4)A+tan^(2)A

Prove that sec^(4)A-sec^(2)A=tan^(2)A+tan^(4)A .

Prove: tan^(2)A sec^(2)B-sec^(2)A tan^(2)B=tan^(2)A-tan^(2)B

Prove the following identities: sec^4A-sec^2A=tan^4A+tan^2A

Prove the following identities: sec^4A-sec^2A=tan^4A+tan^2A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

sec^(2)A sec^(2)B-sec^(2)A tan^(2)B-tan^(2)A sec^(2)B+tan^(2)A tan^(2)B=

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A