Home
Class 12
MATHS
y=sqrt((x^(2)+1)/(x^(2)-1))...

y=sqrt((x^(2)+1)/(x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sqrt((x^(2)+x+1)/(x^(2)-x+1))

y=sqrt((x^(2)+x+1)/(x^(2)-x+1)) find dy/dx

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

Draw the graph of y=(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Draw the graph of y=(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Draw the graph of y=(sqrt(x^(2)+1)-sqrt(x^(2)-1))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))