Home
Class 12
MATHS
" (ii) If "tan^(-1)x+tan^(-1)y+tan^(-1)z...

" (ii) If "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi," prove that "x+y+z=xyz

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^-1 x+tan^-1 y+tan^-1 z=pi/2 , prove that xy+yz+zx=1

If "tan"^(-1) x +"tan" ^(-1) y +"tan"^(-1)z -pi show that x+y+z=xyz.

If tan^(-1)x +tan^(-1) y +tan^(-1) z=pi/2 . Show that xy+yz+zx =1.