Home
Class 12
MATHS
" 17.uf ( (i) "e^(y)(x+1)=1" ,f्aunit fo...

" 17.uf ( (i) "e^(y)(x+1)=1" ,f्aunit fo (shoiv that) "(d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2