Home
Class 11
MATHS
If f(x)=|x|e^x, then at x=0...

If `f(x)=|x|e^x`, then at `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)=e^(x) sin x, x in [0, pi] , then

Let f(x)=x^(3)e^(-3x),x>0. Then the maximum value of f(x) is

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

Let f(x)= { x e^(a x),x lt=0;x+a x^2-x^3,x >0 where a is a positive constant. Find the interval in which f^(prime)(x) is increasing.

Let f(x)= { x e^(a x),x lt=0;x+a x^2-x^3,x >0 where a is a positive constant. Find the interval in which f^(prime)(x) is increasing.