Home
Class 12
MATHS
cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(x)...

cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

If Cot^(-1)x+Sin^(-1)(1//sqrt5)=pi//4 , then the value of x is

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2