Home
Class 12
MATHS
[" (20.) The inequality "|z-4|<|z-2|" re...

[" (20.) The inequality "|z-4|<|z-2|" represents the "],[" given by "],[[" (a) "Re(z)>=0," (b) "Re(z)<0],[" (c) "Re(z)>0," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

|z-4| 0 (b) Re(z) 3(d) None of these

|z-4| 0 (b) Re(z) 3 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

|z-4| (a) Re(z) > 0 (b) Re(z) (c) Re(z) > 3 (d) None of these

The image of plane 2x-y+z=2 in the plane mirror x+2y-z=3 is (a) x+7y-4x+5=0 (b) 3x+4y-5z+9=0 (c) 7x-y+2z-9=0 (d) None of these

The image of plane 2x-y+z=2 in the plane mirror x+2y-z=3 is (a) x+7y-4x+5=0 (b) 3x+4y-5z+9=0( c) 7x-y+2z-9=0 (d) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=\w\=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these