Home
Class 11
MATHS
" (ii) "|[0,xy^(2),xz^(2)],[x^(2)y,0,yz^...

" (ii) "|[0,xy^(2),xz^(2)],[x^(2)y,0,yz^(2)],[x^(2)z,zy^(2),0]|

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate: |(0,xy^(2),xz^(2)),(x^(2)y,0,yz^(2)),(x^(2)z,zy^(2),0)|

evaluate: |(0,xy^(2),xz^(2)),(x^(2)y,0,yz^(2)),(x^(2)z,zy^(2),0)|

Using the properties of determinants in Exercise 1 to 6, evaluate |{:(0,xy^2,xz^2),(x^2y,0,yz^2),(x^2z,y^2z,0):}|

Using properties of determinants,prove that [[-yz,y^(2)+yz,z^(2)+yzx^(2)+xz,-xz,z^(2)+xyx^(2)+xy,y^(2)+xy,-xy]]=(xy+yz+zx)^(2)

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0