Home
Class 12
MATHS
" 9.If "(sin^(4)alpha)/(a)+(cos^(4)alpha...

" 9.If "(sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b)," show that "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b) , show that sin^(8)alpha/a^(3) +cos^(8)alpha/b^(3) =1/(a+b)^(3)

Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follow the relation :(sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

Q.Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follows the relation; (sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

If (sin^4alpha)/(a)+(cos^4alpha)/(b)=1/(a+b) show that, (sin^8alpha)/(a^3)+(cos^8alpha)/(b^3)=1/(a+b)^3

Prove that from the equality (sin^(4)alpha)/a+(cos^(4)alpha)/b=1/(a+b) follows the relations, (sin^(8)alpha)/a^(3) +(cos^(8)alpha)/b^(3)=1/(a+b)^(3)

If sin^4alpha/a+cos^4alpha/b=1/(a+b) ,then show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3) .

If sin^4alpha/a+cos^4alpha/b=1/(a+b) show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3)

Q. Prove that from the equality sin^4 alpha/a+cos^4 alpha/b=1/(a+b) follows the relation; sin^8 alpha/a^3+cos^8 alpha/b^3=1/(a+b)^3.

cos^(4)alpha-sin^(4)alpha=a then (1-a)/(1+a)=

if cos^(4)alpha-sin^(4)alpha=a then (1-a)/(1+a)=