Home
Class 11
MATHS
Let Z1 and Z2, be two distinct complex n...

Let `Z_1 and Z_2`, be two distinct complex numbers and let `w = (1 - t) z_1 + t z_2`for some number "t" with o

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_1 and z_2 be two distinct complex numbers and let z= (1-t)z_1+tz_2 for some real number t with 0lttlt1 . If Arg(w) denotes the principal argument of a non-zero complex number w, then

Let z_1 and z_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 (a) |z-z_1|+|z-z_2|=|z_1-z_2| (b) arg(z-z_1)=arg(z-z_2) (c) (z-z_1) bar(z_2-z_1) = bar (z-z_1)(z_2-z_1) (d) a r g(z-z_1)=a r g(z_2-z_1) .

Let z_(1) and z_(2) be two distinct complex numbers and let z=(1-t)z_(1)+tz_(2) for some real number t with 0 lt t lt 1 . If Arg (w) denotes the principal argument of a non zero complex number w , then

Let z_1a n dz_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 |z-z_1|+|z-z_2|=|z_1-z_2| (z-z_1)=(z-z_2) |z-z_1 z -( z )_1z_2-z_1( z )_2-( z )_1|=0 a r g(z-z_1)=a r g(z_2-z_1)

Let z_1a n dz_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 |z-z_1|+|z-z_2|=|z_1-z_2| (z-z_1)=(z-z_2) |z-z_1 z -( z )_1z_2-z_1( z )_2-( z )_1|=0 a r g(z-z_1)=a r g(z_2-z_1)

Let z_(1) and z_(2) be two distinct complex numbers and z=(1-t)z_(1)+tz_(2) , for some real number t with 0 lt t lt 1 and i=sqrt(-1) . If arg(w) denotes the principal argument of a non-zero compolex number w, then

Let z_(1) and z_(2) be two distinct complex numbers and z=(1-t)z_(1)+tz_(2) , for some real number t with 0 lt t lt 1 and i=sqrt(-1) . If arg(w) denotes the principal argument of a non-zero complex number w, then a. abs(z-z_(1))+abs(z-z_(2))=abs(z_(1)-z_(2)) b. arg(z-z_(1))=arg(z-z_(2)) c. |{:(z-z_(1),bar(z)-bar(z)_(1)),(z_(2)-z_(1),bar(z)_(2)-bar(z)_(1)):}|=0 d. arg(z-z_(1))=arg(z_(2)-z_(1))

Let z_(1) and z_(2) be two distinct complex numbers and z=(1-t)z_(1)+iz_(2) , for some real number t with 0 lt t lt 1 and i=sqrt(-1) . If arg(w) denotes the principal argument of a non-zero complex number w, then

Let z_(1) and z_(2) be two distinct complex numbers and z=(1-t)z_(1)+iz_(2) , for some real number t with 0 lt t lt 1 and i=sqrt(-1) . If arg(w) denotes the principal argument of a non-zero compolex number w, then