Home
Class 12
MATHS
2^(2log4 5)...

`2^(2log_4 5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the following 2^(2(log""_(4)5))

A denotes the product xyz where x,y and z satisfy log_3 x= log5-log7 and log_5 y=log7-log 3 and log_7 z=log 3-log5 B denotes the sum of square of solution of the equation, log_2(log_2 x^6 - 3) - log_2(log_2 x^4 - 5) = log_2 3 C denotes characterstio of logarithm log_2 (log_2 3)-log_2 (log_4 3)+log_2(log_4 5)-log_2(log_6 5)+log_2 (log_6 7)-log_2 (log_6 3) The valuo of A+B+C is equal to

The value of 3^((log)_4 5)+4^((log)_5 3)-5^((log)_4 3)-3^((log)_5 4) is- a.0 b. 1 c.2 d. none of these

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

The equation x^((3/4)(log_2 x)^2 + (log_2 x) - (5/4))=sqrt(2) has (1) at least one real solution (2) exactly three solutions (3) exactly one irrational solution (4) complex roots

let E=log_(2)(log_(2)3)+log_(2)(log_(3)4)+log_(2)(log_(4)5)+log_(2)(log_(5)6)+log_(2)(log_(6)7)+log_(2)(log_(7)8 then 8^(E) is

Prove that log_(2) [log_(4) {log_(5) (625)^(4)}]=1

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

The number of values of x satisfying 2^(log_5 16. log_4 x +x log_2 5) + 5^x + x^((log_5 4)+5) + x^5 = 0

The number of values of x satisfying 2^(log_5 16. log_4 x + log_(root(x)(2))5) + 5^x + x^((log_5 4)+5) + x^5 = 0