Home
Class 12
MATHS
For observations xi given sum(i=1)^10 (...

For observations `x_i` given `sum_(i=1)^10 (X_i - 5) = 10` and `sum_(i=1)^10 (X_i - 5)^2 = 40` If mean and variance of observations `(x_1 - 3),(x_2 - 3),(x_3 - 3).........(x_10 - 3)` is `lambda` & `mu` respectively then ordered pair `(lambda, mu)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^9 (x_i - 5) = 9 and sum_(i=1)^9 (x_i - 5)^2 = 45. The standard deviation of the observations x_1, x_2,………,x_9 is ………….

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

If n=10 , sum_(i=1)^(10) x_(i)=60 and sum_(i=1)^(10) x_(i)^(2)=1000 then find s.d

Let the observations x_i(1 le I le 10) satisfy the equations, Sigma_(i=1)^(10)(x_i-5)=10 and Sigma_(i=1)^(10) (x_i-5)^2=40 . If mu and lamda are the mean and the variance of the observations, x_1-3, x_2-3, …, -3, then the ordered pair (mu, lamda) is equal to :

If sum_(i=1)^(10)(x_(i)-15)=12 and sum_(i=1)^(10)(x-15)^(2)=18 then the S.D.of observation x_(1),x_(2),x_(3),....x_(10) is:

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is